From PRISM to ProbLog and Back Again

نویسندگان

  • Alexander Vandenbroucke
  • Tom Schrijvers
چکیده

PRISM and ProbLog are two prominent languages for Probabilistic Logic Programming. While they are superficially very similar, there are subtle differences between them that lead to different formulations of the same probabilistic model. This paper aims to shed more light on the differences by developing two source-to-source transformations, from PRISM to ProbLog and back.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints for Probabilistic Logic Programming

In knowledge representation, one commonly distinguishes definitions of predicates from constraints. This distinction is also useful for probabilistic programming and statistical relational learning as it explains the key differences between probabilistic programming languages such as ICL, ProbLog and Prism (which are based on definitions) and statistical relational learning languages such as Ma...

متن کامل

Probabilistic Logic Programming Under the Distribution Semantics

The combination of logic programming and probability has proven useful for modeling domains with complex and uncertain relationships among elements. Many probabilistic logic programming (PLP) semantics have been proposed, among these the distribution semantics has recently gained an increased attention and is adopted by many languages such as the Independent Choice Logic, PRISM, Logic Programs ...

متن کامل

The PITA System for Logical-Probabilistic Inference

Probabilistic Inductive Logic Programming (PILP) is gaining interest due to its ability to model domains with complex and uncertain relations among entities. Since PILP systems generally must solve a large number of inference problems in order to perform learning, they rely critically on the support of efficient inference systems. PITA [7] is a system for reasoning under uncertainty on logic pr...

متن کامل

Compiling Probabilistic Logic Programs into Sentential Decision Diagrams

Knowledge compilation algorithms transform a probabilistic logic program into a circuit representation that permits efficient probability computation. Knowledge compilation underlies algorithms for exact probabilistic inference and parameter learning in several languages, including ProbLog, PRISM, and LPADs. Developing such algorithms involves a choice, of which circuit language to target, and ...

متن کامل

Experimentation of an expectation maximization algorithm for probabilistic logic programs

Statistical Relational Learning and Probabilistic Inductive Logic Programming are two emerging fields that use representation languages able to combine logic and probability. In the field of Logic Programming, the distribution semantics is one of the prominent approaches for representing uncertainty and underlies many languages such as ICL, PRISM, ProbLog and LPADs. Learning the parameters for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017